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The propagation of a premixed laminar flame supported by an exothermic chemical reac-
tion under adiabatic conditions but subject to inhibition through a parallel endothermic chem-
ical process is considered. The temperature dependence of the reaction rates is assumed to
have a generalised Arrhenius type form with an ignition temperature, below which there is
no reaction. The heat loss through the endothermic reaction, represented by the dimensionless
parameter α, has a strong quenching effect on wave initiation and propagation. The tempera-
ture profile can have a front or a pulse structure depending on the relative value of the ignition
temperatures and on the value of the parameters α and β, the latter represents the rate at which
inhibitor is consumed relative to the consumption of fuel. The wave speed-cooling parame-
ter (α) curves are determined for various values of the other parameters. These curves can
have three different shapes: monotone decreasing, ⊃-shaped or S-shaped, with the possibil-
ity of having one, two or three different flame velocities for the same value of the cooling
parameter α.
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1. Introduction

In this paper we consider the propagation of a flame supported by an exothermic
chemical reaction under adiabatic conditions but subject to inhibition through a paral-
lel endothermic chemical process. In particular, we will be concerned with determining
the marginal conditions for the establishment of constant-velocity constant-form flame
structures and the dependence of the flame speed in such cases on the reaction parame-
ters. Such information is of interest as we seek to develop alternatives to halon-based
fire extinguishants since the adoption of the Montreal protocol.

Our model involves two chemical steps:

A→P + heat, rate = k1(T )a,

W →Q− heat, rate = k2(T )w.
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The first step has a positive exothermicity (negative reaction enthalpy) Q1 > 0, the
second step has a negative exothermicity, Q2 < 0. The temperature dependence of the
steps is assumed to have the form

ki(T ) = ki0κi(T ), i = 1, 2,

where

κi(T ) = 0 if T � Ti; κi(T ) > 0 if T > Ti. (1)

Ti (i = 1, 2) are the ignition temperatures, below which there is no reaction. We note
that for T � Ti condition (1) is not satisfied by the Arrhenius temperature dependence
but for small ignition temperatures it is a very good approximation. Moreover, it has the
advantage that the cold boundary difficulty does not occur in this case. The solution of
our problem tends to the one without an ignition temperature as Ti → 0 [1]. For T > Ti
we take two main examples for κi(T ). It can be the usual Arrhenius function

κi(T ) = e−Ei/RT (T > Ti),

where Ei (i = 1, 2) are the activation energies, or it can take the simpler form

κi(T ) ≡ 1 (T > Ti).

In the second case κi are step functions. The motivation for studying this special case is
twofold. First, the differential equations governing our model can be solved analytically
and the joining conditions give rise to nonlinear algebraic equations, which are relatively
easy to solve numerically. Hence we obtain the “exact” solution of the problem in this
case. Therefore, this case can serve as a test problem for the numerical investigation.
Second, the step function can be considered as a simplified version of Arrhenius’ law,
namely, below the ignition temperature there is no reaction, whereas above that tem-
perature the reaction rate does not depend on temperature. Therefore some qualitative
features of the model can be revealed via this special case.

Previous work on flame quenching [2–7] has concerned heat removal through phys-
ical processes such as conduction or radiation. In the present case, the “heat loss” process
is controlled by the concentration of the endothermic speciesW , which is consumed dur-
ing the process at a rate which depends on the temperature.

The effect of the addition of sprays or particles (both reactive or inert) on premixed
flame propagation had been investigated experimentally and theoretically [8–10]. These
studies have shown that the propagation speed of a premixed flame is decreased by the
addition of dust (or spray) through negative thermal (and sometimes chemical) feedback.
The main parameters on which the flame speed depended were found to be the virtual
heat capacity of the particles and the particle size. The speed was found to decrease either
monotonically or to have an S-shaped form (depending on the value of the particle-size
parameter).
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The modification of our system (with a second-order reaction) was investigated
numerically and with high activation energy asymptotics [11,12]. From this previous
work, we expect the important parameters to be represented by the dimensionless groups:

α = (−Q2)k20W0

Q1k10A0
, β = k20µW

k10µA
,

where A0,W0 are the initial concentrations of A and W , and µA,µW are the molar
masses.

The aim of this work is to determine the dependence of the dimensionless flame
velocity c on those parameters, find critical values of α (dependent on other parameters)
at which flame extinction occurs and to determine the temperature and concentration
profiles.

In the general case (section 2), when the functions κi are assumed to satisfy only
the assumptions in (1), we can determine some qualitative properties of the solutions. It
turns out that we can have two different types of front waves or pulse waves in temper-
ature. We give conditions in terms of α, β and Ti for the existence of these solutions.
In the case when κ1 and κ2 are step functions (sections 3 and 4) we explicitly determine
the dependence of c on α for any value of β and Ti , and thus determine the extinction
value of α belonging to the turning point of the (α, c) diagram. We found a new feature
of this diagram, namely in the case T1 > T2 it can have two turning points, that is we
can have three solutions (with three different flame velocities) for the same values of
the parameters. We note that all calculations are made for arbitrary values of the Lewis
numbers, but for simplicity the results are presented in the case when LA = LW = 1.

2. Model and general results

2.1. Model

The nondimensional equations governing our model, written in a reference frame
moving with the flame front, are [7,13–15]:

b′′(y)− cb′(y)+ a(y)f1
(
b(y)

) − αw(y)f2
(
b(y)

) = 0, (2)

1

LA
a′′(y)− ca′(y)− a(y)f1

(
b(y)

) = 0, (3)

1

LW
w′′(y)− cw′(y)− βw(y)f2

(
b(y)

) = 0, (4)

on −∞ < y <∞ with boundary conditions

b(y)→ 0, a(y)→ 1, w(y)→ 1 as y →−∞, (5)

b′(y)→ 0, a′(y)→ 0, w′(y)→ 0 as y →+∞ (6)

and with the assumption that

b(y) > 0, a(y) � 0, w(y) � 0, c > 0, −∞ < y <∞. (7)
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This assumption excludes the trivial solution b ≡ 0, a ≡ 1, w ≡ 1. Here the nondi-
mensional variables a, b,w represent the fuel concentration, temperature and the con-
centration of the inhibitor. The Lewis numbers LA and LW and the parameters α, β
are nonnegative. The scaled ignition temperatures are bI, bII ∈ [0, 1). Therefore the
functions f1 and f2 are assumed to satisfy the following conditions:

f1(b) = 0, if 0 � b � bI; f1(b) > 0, if b > bI; (8)

f2(b) = 0, if 0 � b � bII; f2(b) > 0, if b > bII. (9)

It is also assumed that f1, f2 are bounded functions that are differentiable except at most
at the point bI, respectively bII, where they have right limit

ϕ1 = lim
b→b+I

f1(b), ϕ2 = lim
b→b+II

f2(b). (10)

As it was mentioned above, we have two examples in mind, Arrhenius dependence for
temperatures above the ignition temperature and a step function that jumps from zero
to 1 at the ignition temperature.

In the next section we assume that a, b,w, c satisfy (2)–(7) and we derive some
qualitative properties of the solution. In the following three subsections we determine
the structure of the temperature profile. Throughout this section it is assumed only that
f1 and f2 satisfy (8)–(9), their concrete forms are not specified.

2.2. Qualitative properties of the solutions

Proposition 1. The functions a and w are nonincreasing.

Proof. Multiplying equation (3) with LAe−LAcy and integrating over (y,∞) we get

a′(y)e−LAcy = −
∫ ∞
y

e−LAcsa(s)f1
(
b(s)

)
ds

yielding a′(y) � 0 for all y. Similarly from equation (4) we obtain w′(y) � 0. �

Proposition 2. The limits

a+ = lim+∞ a, b+ = lim+∞ b, w+ = lim+∞w

exist and

a+ + b+ − α
β
w+ = 1− α

β
. (11)

Moreover, if ϕ1 > 0 and there exists y∗, such that b(y) > bI for all y > y∗, then a+ = 0.
If ϕ2 > 0 and there exists y∗, such that b(y) > bII for all y > y∗, then w+ = 0.

Proof. The existence of a+ and w+ follows from the monotonicity of the functions a
and w and condition (6). To prove the existence of b+ and derive (11) we can combine
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equations (2)–(4) to eliminate the reaction terms, integrate once and apply boundary
conditions (5)–(6), for the details see [12].

If b(y) > bI for all y > y∗, then

lim
y→∞f1

(
b(y)

)
> 0

since the value of the limit is f1(b+) > 0 if b+ > bI, and it is ϕ1 > 0 if b+ = bI. Hence
from equation (3) a+ = 0. Similarly, from equation (4) we get w+ = 0. �

Proposition 3. There exist y1 and y2, such that b(y1) > bI and b(y2) > bII.

Proof. First we show the existence of y1. Let us assume the contrary b(y) � bI for
all y. Then f1(b(y)) ≡ 0, hence multiplying equation (2) with e−cy and integrating over
(y,∞) we get

b′(y)e−cy = −α
∫ ∞
y

e−csw(s)f2
(
b(s)

)
ds

yielding b′(y) � 0 for all y. Boundary conditions (5) then imply that b is the trivial
solution b ≡ 0 contradicting (7).

To prove the existence of y2, assume the contrary b(y) � bII for all y. Then
f2(b(y)) ≡ 0, and following the argument given above, we obtain b′(y) � 0 for all y
and b′(y) > 0 if b(y) > bI. Hence b can attain the value bI at most once and the limit

f1+ = lim
y→∞f1

(
b(y)

)

exists. From equation (2) we get

a+f1+ = 0. (12)

Adding the equations (2) and (3) and integrating over (−∞,∞) we obtain

a+ + b+ = 1. (13)

Equation (12) gives two possibilities. First, a+ = 0, then from (13) b+ = 1 contradicting
to b(y) � bII < 1. Second, f1+ = 0 implying b(y) � bI that yields b ≡ 0 again, which
contradicts (7). �

Proposition 4. If b(y∗) = bII, then b(y) � bII for all y > y∗.

Proof. Let us assume the contrary, i.e., that there exists y1 > y
∗, such that b(y1) < bII.

Then there exists y2 ∈ (y∗, y1), such that

b(y2) < bII, b′(y2) < 0. (14)

We show that

b(y) < bII for all y > y2. (15)
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Namely, let us assume that there exists y3 > y2, such that

b(y3) = bII and b(y) < bII for all y ∈ (y2, y3). (16)

Then multiplying equation (2) with e−cy and integrating on (y2, y) we get

b′(y)e−cy = b′(y2)e
−cy2 −

∫ y

y2

e−csa(s)f1
(
b(s)

)
ds < 0 for all y ∈ (y2, y3). (17)

Thus b is decreasing on (y2, y3) implying that b(y3) < bII, which contradicts (16). Hence
we have (15) and, consequently, (17) for all y ∈ (y2,∞). Going to the limit y →∞ in
(17) we obtain b′(y2) � 0 contradicting (14) and completing the proof. �

Corollary 1. If b(y∗) = bII, then b′(y∗) � 0.

Proposition 5. If b(y∗) = bII and b′(y∗) > 0, then b(y) < bII and b′(y) > 0 for all
y < y∗.

Proof. The inequality b(y) < bII follows directly from proposition 4. Hence
f2(b(y)) = 0 for all y < y∗. Then multiplying equation (2) with e−cy again and in-
tegrating on (y, y∗) we get

b′(y)e−cy = b′(y∗)e−cy
∗ +

∫ y∗

y

e−csa(s)f1
(
b(s)

)
ds > 0 for all y < y∗.

Thus we have b′(y) > 0 for all y < y∗. �

Proposition 6. If bI < bII, then b attains the value bI once, and there is no open interval
where b(y) ≡ bII.

Proof. According to proposition 3 the function b attains the values bI and bII at least
once. We can assume that b attains bII first at zero, because the differential equations are
translationally invariant. Then by proposition 5 the function b is increasing for y < 0,
hence it attains the value bI exactly once in (−∞, 0). According to proposition 4 b(y) �
bII > bI for y > 0, therefore b cannot attain bI in (0,∞). It remains to prove that b(y)
cannot be the constant bII in any open (nonempty) interval in (0,∞). This result follows
from

a(y) > 0 for all −∞ < y <∞ (18)

(see equation (2)). We now prove the inequality. Since a is nonincreasing and a � 0,
therefore only the case a(y) ≡ 0 in (y1,∞) has to be excluded. As it was shown above
b attains the value bI exactly once in (−∞, 0). Let us denote that point by l. It can be
easily seen that a(y) = 1−KecLAy in (−∞, l] with some constant K. Hence a(y) > 0
in that interval. In the interval (l,∞) b(y) > bI, therefore the function y �→ f1(b(y)) is
smooth. Hence the solution of the initial value problem corresponding to the differential
equation (3) is unique. Therefore a cannot be everywhere zero in any open subinterval,
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because otherwise it would be zero in (l,∞), which contradicts a(l) > 0. Thus (18) is
proved and the proof is complete. �

The results formulated in the above propositions enable us to determine the qual-
itative structure of the temperature profiles. These depend strongly on the value of bI

relative to bII, therefore we shall consider the cases bI < bII, bI = bII and bI > bII

separately. We can assume, since the differential equations (2)–(4) are translationally
invariant and according to proposition 5 the function b is increasing before it reaches the
value bII, that in all cases

b(0) = min{bI, bII} and b(y) < min{bI, bII} for y < 0. (19)

The structure of the temperature profiles depend strongly also on the continuity
of fi . If fi are continuous, i.e., ϕi = 0 (see (10)), then uniqueness of the solution of
the initial value problem corresponding to the differential equation (2) implies that the
function b cannot be the constant bII in any open interval in the case bI � bII as well (it
is true in the case bI < bII generally according to proposition 6). The structure of the
temperature profiles can be more complex in the case ϕi > 0, i.e., when f1 and f2 have
a jump at bI and at bII, respectively. (In that case uniqueness of the initial value problem
is not guaranteed.) Since the main object of the paper is the step function case, when the
characterisation of the temperature profiles is different in the two cases, we shall assume

(H1) ϕi > 0 for i = 1, 2.

We cannot exclude the possibility of oscillatory solutions, although we have been
unable to find such solutions. To exclude this possibility we make the following assump-
tions where appropriate.

(H2) The function b attains the value bI at most twice.
(H3) If b(y∗) = bII and b′(y∗) = 0, then b(y) ≡ bII for all y > y∗.

2.3. The structure of the temperature profile in the case bI < bII

In this case (19) reads as

b(0) = bI and b(y) < bI for y < 0.

The structure of the temperature profile in (0,∞) is described in the next proposi-
tion.

Proposition 7. Assume that (H3) and bI < bII hold. Then there exists l > 0, such that
b(l) = bII and

bI < b(y) < bII, for 0 < y < l; bII < b(y) for l < y <∞.
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Proof. Let l be the first point where b attains the value bII. The existence of such an l
follows from proposition 3. We have to prove the second inequality. Assume that there
exists y∗ > l, such that b(y∗) = bII. Then corollary 1 implies that b′(y∗) = 0, hence
from (H3) b(y) ≡ bII for all y > y∗, which contradicts to proposition 6.

Typical temperature profiles for this case are shown in figure 2. �

2.4. The structure of the temperature profile in the case bI = bII

In this case proposition 4 implies that

b+ � bI. (20)

According to the value of b+ we can have two different temperature profiles:

• front profiles, if b+ > bI;

• pulse profiles, if b+ = bI.

In this case (19) reads as

b(0) = bI and b(y) < bI for y < 0. (21)

The structure of the temperature profile in (0,∞) is described in the next proposition.

Proposition 8. Assume that (H3) and bI = bII hold. Then exactly one of the following
two possibilities holds.

1. bI < b(y) for all 0 < y <∞.

2. There exists l > 0, such that b(l) = bI and

bI < b(y), for 0 < y < l; b(y) ≡ bI, for l � y <∞.

We shall refer to these as type 1 and type 2 temperature profiles.

Proof. According to proposition 3 we have b(y) > bI for small y > 0. If there is no
point l > 0 where b(l) = bI, then case 1 holds. If there exists l > 0 where b(l) = bI, then
let us assume that this is the first positive value where b attains bI. Then by corollary 1
b′(l) = 0 (since bII = bI) and by (H3) b(y) ≡ bI for y > l. �

It is obvious that the front profiles belong to type 1 and the pulse profiles can belong
either to type 1 or to type 2. However, the two classifications of the temperature profiles
differ only in the marginal cases between the two classes. The border between type 1 and
type 2 profiles (l = ∞) belongs to type 1. The border between front and pulse profiles
(b+ = bI and b(y) > bI for y > 0) belongs to the pulses. We note that in the case
ϕi = 0 we can have only type 1 profiles and the profiles are classified only according to
the value of b+ as fronts and pulses.

For some regions of the parameter plane (α, β) we can determine the type of the
temperature profiles in this general case. A more detailed description will be given in
the step function case.
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Proposition 9. Assume that bI = bII holds.

1. If b is a type 1 temperature profile and ϕi > 0 (i = 1, 2), then α � β(1 − bI).

2. If b is a type 2 temperature profile, f1 ≡ f2 and β > 1, then α > β(1− bI).

Proof. 1. From proposition 2 we get a+ = 0 = w+. Hence (11) reads as

b+ = 1− α
β

(22)

and the desired inequality follows from (20) and (22).
2. Now b+ = bI and we will show that

a+ � αw+. (23)

Once this is shown we have from (11) that

(1− bI)β − α � αw+(β − 1) < 0.

Hence, we only have to prove (23). Since b is a type 2 profile, b(y) ≡ bI in [l,∞).
Multiplying equation (2) by e−cy and integrating on (y, l) for some y ∈ (0, l) we get

b′(y)e−cy =
∫ l

y

e−cs
(
a(s) − αw(s))f1

(
b(s)

)
ds. (24)

It can be shown that a − αw cannot have infinitely many zeros in [0, l], hence
a(s) − αw(s) does not change sign in an interval [l1, l] for some l1 ∈ (0, l). There-
fore b′ does not change sign in that interval. Since b(y) > bI in (0, l), b′(y) < 0 in
(l1, l), and from (24) we have a(s) − αw(s) < 0 for s ∈ (l1, l). Then going to the limit
s → l we obtain (23). �

Remark 1. In the case of step functions bI = bII implies f1 ≡ f2 and we will show
that for β � 1 there are no type 2 temperature profiles. Hence, in this case, the line
α = β(1− bI) separates the regions of front and pulse solutions.

Typical temperature profiles for this case are shown in figure 4.

2.5. The structure of the temperature profile in the case bI > bII

In this case proposition 4 implies

b+ � bII. (25)

According to the value of b+ we can have three different temperature profiles:

• front 1 profiles, if b+ > bI;

• front 2 profiles, if bII < b+ � bI;

• pulse profiles, if b+ = bII.
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In this case (19) reads as

b(0) = bII and b(y) < bII for y < 0. (26)

The structure of the temperature profile in (0,∞) is described in the next proposi-
tion.

Proposition 10. Assume that (H1)–(H3) and bI > bII hold. Then exactly one of the
following three possibilities holds.

1. There exists l > 0, such that b(l) = bI and

bII < b(y) < bI, for 0 < y < l; bI < b(y), for l < y <∞.
2. There exist L > l > 0, such that b(l) = bI = b(L) and

bII < b(y) < bI, for 0 < y < l; bI < b(y), for l < y < L;
bII < b(y) < bI, for L < y <∞.

3. There exist ! > L > l > 0, such that b(l) = bI = b(L), b(!) = bII and

bII < b(y) < bI, for 0 < y < l; bI < b(y), for l < y < L;
bII < b(y) < bI, for L < y < !; b(y) ≡ bII, for ! � y <∞.

We shall refer to these as type 1, type 2 and type 3 temperature profiles.

Proof. Let l be the first point where b attains the value bI. The existence of such an l
follows from proposition 3. If there is no point L > l where b(L) = bI, then 1 holds.
If such an L exists, then by (H2) we have b(y) < bI for all y > L. If b(y) > bII for all
y > L, then 2 holds. If there exists ! > L where b(!) = bII, then from corollary 1
b′(!) = 0, hence (H3) implies b(y) ≡ bII in [!,∞), i.e., 3 holds. �

Typical temperature profiles for this case are shown in figures 7–9. It is obvious
that front 1 profiles belong to type 1, front 2 profiles can belong either to type 1 or to
type 2, and the pulse profiles can belong either to type 2 or to type 3. However, the two
classifications of the temperature profiles differ again only in the marginal cases between
the two classes, as in the case bI = bII. We note that when ϕi = 0 we can only have type
1 and type 2 profiles and the profiles are classified only according to the value of b+ as
front 1, front 2 profiles and pulses.

For some regions of the (α, β) parameter plane we can determine the type of the
temperature profiles in this general case. A more detailed description will be given in
the step function case.

Proposition 11. Assume that bI > bII.

1. If b is a type 1 temperature profile and ϕi > 0 (i = 1, 2), then α � β(1 − bI).

2. If b is a type 2 temperature profile and ϕ2 > 0, then α � β(1 − bII).
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Proof. 1. From proposition 2 we get a+ = 0 = w+. Hence (11) reads as

b+ = 1− α
β
. (27)

For a type 1 profile b+ � bI, therefore the desired inequality follows from (27).
2. From proposition 2 we get w+ = 0. Hence (11) reads as

a+ + b+ = 1− α
β

(28)

and the inequality follows from a+ � 0, (25) and (28). �

3. Method for solving the differential equations in the step function case

In this section we present a method to solve problem (2)–(7) when f1 and f2 are
the step functions

f1(b) =
{

1 if b > bI,

0 otherwise,
f2(b) =

{
1 if b > bII,

0 otherwise.
(29)

In this case the system of differential equations is piecewise linear, i.e., the real line R
can be divided into segments, in which the differential equations are linear with constant
coefficients, hence the solutions can be given explicitly. The joining conditions at the
endpoints of the segments give a system of nonlinear algebraic equations that has to
be solved to obtain the solution. Here we consider the solutions that satisfy hypotheses
(H1)–(H3), but the algorithm presented below works also in the more general case, when
instead of (H2) it is assumed only that the number of points where b attains the value bI

is finite.
We denote the points where b attains the value bI or bII with l1 < l2 < · · · < ln+1.

If b ≡ bII in [y∗,∞), then let ln+1 = y∗ and the points y > y∗ do not appear in the set
{l1, . . . , ln+1}. Let

bk = b(lk) for k = 1, 2, . . . , n+ 1. (30)

Hence the value of bk is bI or bII. As mentioned above, we can assume l1 = 0, because
of the translational invariance of the problem. For convenience we will use the notation
l0 = −∞ and ln+2 = ∞. The points l1, . . . , ln+1 divide the real line into n+2 segments,
in each of which the differential equations are linear. Let

εk = f1
(
b(y)

)
, δk = f2

(
b(y)

)
for y ∈ (lk, lk+1), k = 0, 1, . . . , n+ 1, (31)

that is εk and δk can be 0 or 1.
In sections 2.3–2.5 we have determined the qualitative structure of the tempera-

ture profile in the general case. Now we shall use this characterisation in the case of
step functions. We have established that the solutions belong to one of the six types
summarised in table 1. (Assuming that b satisfies (H1)–(H3).) The table also shows the
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Table 1
The six possible types of the temperature profiles. The number of segments determined by the points

l1, . . . , ln+1 and the values of bk, εk, δk for k = 1, 2, . . . , n+ 1 are shown.

Type Number of Value of bk Value of εk Value of δk
segments
(n+ 2)

bI < bII front 3 b1 = bI, b2 = bII ε1 = 1, ε2 = 1 δ1 = 0, δ2 = 1
bI = bII front 2 b1 = bI = bII ε1 = 1 δ1 = 1
bI = bII pulse 3 b1 = bI = bII = b2 ε1 = 1, ε2 = 0 δ1 = 1, δ2 = 0
bI > bII front 1 3 b1 = bII, b2 = bI ε1 = 0, ε2 = 1 δ1 = 1, δ2 = 1
bI > bII front 2 4 b1 = bII, b2 = bI ε1 = 0, ε2 = 1 δ1 = 1, δ2 = 1

b3 = bI ε3 = 0 δ3 = 1
bI > bII pulse 5 b1 = bII, b2 = bI ε1 = 0, ε2 = 1 δ1 = 1, δ2 = 1

b3 = bI, b4 = bII ε3 = 0, ε4 = 0 δ3 = 1, δ4 = 0

number of segments determined by the points l1, . . . , ln+1 and the values of bk, εk, δk for
k = 1, 2, . . . , n+ 1.

We now follow the algorithm described below to determine the profiles and the
flame velocity in each case.

Step 1

We choose the type of the solution we wish to determine. We note that the type of
solution depends also on the parameters α and β, hence it can happen that the chosen
type of solution does not exist for the given values of α and β.

Once the type is chosen, the value of n is given together with bk , εk and δk (for
k = 1, . . . , n+ 1) according to table 1. We consider c, l2, . . . , ln+1 to be given (l1 = 0 is
assumed) and express the solution in terms of them. In the final step we derive a system
of n+ 1 algebraic equations that determine the value of the various unknowns.

Step 2

We solve the differential equations in each segment (lk, lk+1) for k = 0, 1, . . . ,
n+ 1. In the interval (lk, lk+1) system (2)–(4) takes the form

b′′(y)− cb′(y)+ εka(y) − δkαw(y) = 0, (32)
1

LA
a′′(y)− ca′(y)− εka(y) = 0, (33)

1

LW
w′′(y)− cw′(y)− δkβw(y) = 0. (34)

First we solve equations (33) and (34), since these are independent homogeneous linear
differential equations, and then we use their solution to solve the inhomogeneous linear
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differential equation (32). The general solution of equations (33) and (34) can be written
in the form

a(y) = Akeλk1y + Bkeλk2y (k = 0, 1, . . . , n+ 1), (35)

w(y) = Ckeνk1y +Dkeνk2y (k = 0, 1, . . . , n+ 1), (36)

where λk1 > λk2 are the solutions of

λ2 − LAcλ− εkLA = 0 (37)

and νk1 > νk2 are the solutions of

ν2 − LWcν − δkLWβ = 0. (38)

The general solution of equation (32) can be written as

b(y) = Ek +Fkecy +Rk1eλk1y +Rk2eλk2y +Rk3eνk1y +Rk4eνk2y (k = 0, 1, . . . , n+ 1).
(39)

Before proceeding to step 3 we outline the remaining part of the algorithm. The
coefficients Ak,Bk, Ck,Dk (4n+ 8 unknowns) are determined by the joining conditions
that a and w are continuously differentiable at l1, . . . , ln+1 (4n+4 equations) and by the
boundary conditions (5)–(6) (4 equations). The coefficients Rk1, Rk2, Rk3, Rk4 are deter-
mined by Ak,Bk, Ck,Dk. The coefficients Ek and Fk are determined by the boundary
conditions (30). Finally, we will have n+ 1 equations arising from the continuity of the
derivative of b at the points l1, . . . , ln+1. These equations determine the n+ 1 unknowns
c, l2, . . . , ln+1. The resulting system of nonlinear algebraic equations has to be solved
numerically.

Step 3

We determine the coefficients Ak,Bk, Ck,Dk for k = 0, 1, . . . n+1. First we make
use of boundary conditions (5). Since ε0 = δ0 = 0, therefore from (37) and (38):

λ01 = LAc, λ02 = 0, ν01 = LWc, ν02 = 0. (40)

Hence (5) yields

B0 = 1, D0 = 1. (41)

To use boundary conditions (6) we note that

λn+1,1 > 0, νn+1,1 > 0. (42)

Hence (6) yields

An+1 = 0, Cn+1 = 0. (43)

The joining conditions expressing the continuous differentiability of a at lk (for k = 1,
. . . , n+ 1) read as
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Ak−1eλk−1,1lk + Bk−1eλk−1,2lk =Akeλk1lk + Bkeλk2lk , (44)

Ak−1λk−1,1eλk−1,1lk + Bk−1λk−1,2eλk−1,2lk =Akλk1eλk1lk + Bkλk2eλk2lk . (45)

Similarly, for w we have

Ck−1eνk−1,1lk +Dk−1eνk−1,2lk =Ckeνk1lk +Dkeνk2lk , (46)

Ck−1νk−1,1eνk−1,1lk +Dk−1νk−1,2eνk−1,2lk =Ckνk1eνk1lk +Dkνk2eνk2lk . (47)

These 4n + 4 equations together with the 4 equations in (41) and (43) give a system of
4n + 8 linear equations for the 4n + 8 unknowns Ak,Bk, Ck,Dk (k = 0, 1, . . . , n+ 1).
If c, l1, . . . , ln+1 are given, then Ak,Bk, Ck,Dk can be obtained explicitly.

Step 4

We now determine the coefficients Ek, Fk, Rki for k = 0, 1, . . . , n + 1, i = 1,
2, 3, 4. It is easy to see that ε0 = δ0 = 0 implies that

b(y) = b1ecy

for y < 0, hence

E0 = R01 = R02 = R03 = R04 = 0, F0 = b1. (48)

The values of Rki can be readily obtained by the method of undetermined coefficients.
Namely, we substitute (35), (36) and (39) into (32) and put the coefficients of eλk1y , eλk2y ,
eνk1y and eνk2y equal to zero, to obtain

Rk1= εkAk

λk1(c − λk1) , Rk2 = εkBk

λk2(c − λk2) ,

Rk3= δkαCk

νk1(νk1 − c) , Rk4 = δkαDk

νk2(νk2 − c) . (49)

Since the values of Ak,Bk, Ck,Dk have already been determined, expression (49) gives
the values of Rki .

The values of Ek and Fk for k = 1, . . . , n can be obtained from the boundary
conditions (30)

b(lk) = bk, b(lk+1) = bk+1. (50)

Introducing

Gk =Rk1eλk1lk + Rk2eλk2lk + Rk3eνk1lk + Rk4eνk2lk ,

Hk =Rk1eλk1lk+1 + Rk2eλk2lk+1 + Rk3eνk1lk+1 + Rk4eνk2lk+1,

(50) reads as

bk = Ek + Fkeclk +Gk, bk+1 = Ek + Fkeclk+1 +Hk
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yielding

Ek = (bk −Gk)e
clk+1 + (Hk − bk+1)eclk

eclk+1 − eclk
, (51)

Fk = bk −Gk +Hk − bk+1

eclk − eclk+1
. (52)

The value of En+1 and Fn+1 are given by the equation

b(ln+1) = bn+1 (53)

and the boundary condition (6). The boundary condition, (42) and (53) imply

Fn+1 = 0, En+1 = bn+1 −Gn+1.

Step 5

We determine the unknowns c, l2, . . . , ln+1 from the joining conditions for b (recall
that l1 = 0). The function b has to be continuously differentiable at l1, . . . , ln+1, that is
the left-hand side limit and the right-hand side limit of b′ has to be the same at those
points. Hence we have n + 1 equations for the n + 1 unknowns c, l2, . . . , ln+1. This
matching condition in lk reads as

Fk−1ce
clk + Rk−1,1λk−1,1eλk−1,1lk + Rk−1,2λk−1,2eλk−1,2lk

+ Rk−1,3νk−1,1eνk−1,1lk + Rk−1,4νk−1,2eνk−1,2lk

= Fkceclk + Rk1λk1eλk1lk + Rk2λk2eλk2lk + Rk3νk1eνk1lk + Rk4νk2eνk2lk . (54)

This system can be solved by the Newton–Raphson method for c, l2, . . . , ln+1. It turned
out that for certain values of α and β this system has 2 or 3 solutions that are difficult to
find with this method. Therefore we solved the system for α, l2, . . . , ln+1 with a given
value of c, then we got a unique solution. Hence the (α, c) diagram is parametrised by c.
Once the values of α, l2, . . . , ln+1 are obtained, it has to be checked that the value of b(y)
lies between bk and bk+1 for all y ∈ (lk, lk+1).

4. Results

The algorithm detailed in the previous section was implemented as a computer
program. The parameters of the program are

n, bI, bII, c, β, b1, . . . , bn+1, ε1, . . . , εn+1, δ1, . . . , δn+1.

The input of the program is the (n+ 1)-dimensional vector

(α, l2, . . . , ln+1).

The output of the program is the (n+1)-dimensional vector the coordinates of which are
obtained as the difference of the left-hand side and the right-hand side of the equations
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in (54). Thus the program defines a function F : Rn+1 → Rn+1. The solution of the
equation

F(x) = 0

was obtained by the Newton–Raphson method. We will present the explicit form of
system (54) only in the cases n = 0 and n = 1. As mentioned above, all the results
determined numerically are for unit Lewis numbers, i.e., LA = LW = 1. However, all
calculations are made for arbitrary Lewis numbers.

4.1. Case bI < bII

According to proposition 7 we have n = 1 and the values of bk, εk, δk are given in
the first row of table 1. Now system (54) reads as(

bI − η2

η2 − c
)

ecl2 + c

η2 − ceη2l2 − bII + 1 = 0, (55)

β
c − ξ2

ξ2

(
bI − η2

η2 − c
)

ecl2 = α, (56)

where

η1,2 = 1

2

(
LAc ±

√
L2
Ac

2 + 4LA
)
, ξ1,2 = 1

2

(
LWc ±

√
L2
Wc

2 + 4LWβ
)
. (57)

The first equation can be solved for l2 if c is given. It can be easily seen that there
is a critical value ccrit of c, such that for c < ccrit there is no solution for l2 and there are
two solutions if c > ccrit. It can be shown that the condition

bI < b(y) < bII for all y ∈ (0, l2)
is satisfied only if l2 is the smaller solution of (55). When l2 is determined equation (56)
gives the value of α belonging to the given c. It is easy to see that the condition

bII < b(y) for all y > l2

is equivalent to

b+ > bII

which yields from (11)

1− α
β
> bII. (58)

Hence a part of the (α, c) diagram determined by (55)–(56) must be cut off by the con-
dition (58). The (α, c) diagram is shown in figure 1 for different values of β. The tem-
perature profiles for different values of c and fixed value β = 2 can be seen in figure 2.
The value c = 2.57232 is the critical value of the velocity, below which equation (55)
has no solution for l2 when β = 2.
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Figure 1. The (α, c) diagram for various values of β in the case bI = 0.1, bII = 0.2. The dotted lines are
drawn at α = β(1 − bII).

Figure 2. Temperature profiles for different values of c and fixed value β = 2 in the case bI = 0.1,
bII = 0.2. The value c = 2.57232 is the critical value of the velocity, below which there is no solution.
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Figure 3. The (α, c) diagram for various values of β in the case bI = bII = 0.1. The dotted lines are drawn
at α = β(1 − bI). The points of the diagrams lying on the left-hand side of the corresponding dotted line

belong to front solutions, those lying on the right-hand side belong to pulse solutions.

4.2. Case bI = bII

According to proposition 8 we can have front or pulse type solutions with n = 0
and n = 1, respectively. The values of bk, εk, δk are given in the second and third rows
of table 1.

In the case of fronts (54) contains only one equation (n+ 1 = 1)

α = β2 η
2
2 − bI

ξ 2
2

. (59)

(The parameters η2 and ξ2 are defined in (57).) This equation gives the (α, c) diagram
directly, but according to proposition 9 the condition

α < β(1 − bI) (60)

has to be satisfied. Hence only that part of the (α, c) diagram determined by (59), for
which condition (60) holds, is appropriate. If β � 1, then (60) is fulfilled at all points of
the diagram. For β < 1 the condition (60) cuts off one part of the diagram, the part of the
diagram belonging to the pulse type solutions. In the case of pulse type solutions n = 1
and the values of bk, εk, δk are given in the third row of table 1. Then system (54) has a
solution only if β < 1, i.e., for β � 1 there are no pulse solutions. For β < 1 the part
of the (α, c) diagram belonging to the pulse solutions joins smoothly to the other part,
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Figure 4. Temperature profiles for different values of β and fixed value c = 2 in the case bI = bII = 0.1.

belonging to the front type solutions, at α = β(1−bI). The diagrams for different values
of β are shown in figure 3. For every value of β a dotted line is drawn at α = β(1− bI).
That is the value of α where the diagram intersects the α axis and at the same time it
separates the front and pulse regions. The points of the diagram on the left-hand side of
the corresponding dotted line belong to front type temperature profiles, and those on the
right-hand side belong to pulse profiles. We can see that for β � 1 the entire diagram lies
on the left-hand side of the corresponding dotted line. The temperature profiles for c = 2
and different values of β can be seen in figure 4. For larger values of β the temperature is
monotone increasing. However, as β is reduced there is an overshoot in the temperature
profile before the final conditions are attained. This effect becomes more pronounced as
β is decreased.

4.3. Case bI > bII

According to proposition 10 we can have front 1, front 2 or pulse type solutions
with n = 1, n = 2 and n = 3, respectively. The values of bk, εk, δk are given in the last
three rows of table 1.

In the case of front 1 solutions system (54) consists of two equations. It has a
solution for any value of β, however, only those solutions are appropriate, for which the
condition α < β(1−bI) holds. There exists a critical value β2 of β, such that, for β > β2,
all solutions satisfy the condition. Unlike the case bI = bII now the (α, c) diagram is not
monotone for all values of β. There exists another critical value β3 of β, such that for
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β � β3 the diagram is monotone and for β < β3 it is S-shaped, i.e., there is a range
of α for which there are 3 different velocities. Hence, in this case, our system can have
3 solutions for the same parameter values. It will be the object of future work to find out
which of them are stable.

In the case of front 2 solutions system (54) consists of three equations. It has
a solution only if β < β2. However, only those solutions are appropriate, for which the
condition

β(1− bI) � α < β(1− bII) (61)

holds. This part of the diagram joins smoothly to the part belonging to front 1 solutions
at α = β(1 − bI). We found a third critical value β1 of β, such that for β > β1 the
right-hand side inequality of (61) holds.

In the case of pulse solutions system (54) consists of four equations. It has a so-
lution only if β < β1. This part of the diagram joins smoothly to the part belonging to
front 2 solutions at α = β(1 − bII).

Summarising have the following cases according to the structure of the (α, c) dia-
gram.

• If 0 < β � β1, then the diagram is S-shaped and it consists of three parts be-
longing to front 1, front 2 and pulse solutions, respectively.

• If β1 < β � β2, then the diagram is S-shaped and it consists of two parts be-
longing to front 1 and front 2 solutions, respectively.

• If β2 < β < β3, then the diagram is S-shaped and all points belong to front 1
solutions.

• If β3 � β, then the diagram is monotone and all points belong to front 1 solu-
tions.

The transition of the (α, c) diagram as β is varied is shown in figure 5, where
bI = 0.2 and bII = 0.1. For every value of β a dotted line is drawn at α = β(1−bI)where
the diagram intersects the α axis and at the same time it separates the front 1 and front 2
regions. The front 2 and pulse regions are separated by the vertical line at α = β(1−bII),
which is not shown in the figure. The critical values of β can be determined as follows.
If β = β1, then the diagram is tangential to the vertical line drawn at α = β(1−bII). For
these values of bI and bII this is, approximately, β1 ≈ 0.15. If β = β2, then the diagram
is tangential to the vertical line drawn at α = β(1 − bI). For these values of bI and bII

this is, approximately, β2 ≈ 0.26. If β = β3, then the two turning points of the diagram
coincide. For these values of bI and bII this is, approximately, β3 ≈ 0.3.

In figure 6 the (α, c) diagram is shown for β = 0.1, bI = 0.2, bII = 0.1. This value
of β is below the critical value β1, hence all of the three type solutions exist. The dotted
lines are drawn at α = β(1− bI) and at α = β(1− bII). These lines separate the front 1,
front 2 and pulse regions.

The profiles are shown in figures 7–9. In figure 7 α = 0.0788 to which three
different velocity values and three front 1 type solutions belong. In figure 8 α = 0.087
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Figure 5. The (α, c) diagram for various values of β (shown in the figure) in the case bI = 0.2, bII = 0.1.
The dotted lines are drawn at α = β(1 − bI). The points of the diagrams lying on the left-hand side of the
corresponding dotted line belong to front 1 solutions, those lying on the right-hand side belong to front 2 or

pulse solutions.

Figure 6. The (α, c) diagram for β = 0.1, bI = 0.2, bII = 0.1. The dotted lines are drawn at α = β(1− bI)

and at α = β(1− bII) separating the regions belonging to front 1, front 2 and pulse solutions.
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Figure 7. Temperature (b), fuel concentration (a) and inhibitor concentration (w) profiles for three different
values of c (shown in the figure) belonging to the parameter value α = 0.078 in the case β = 0.1, bI = 0.2,

bII = 0.1. For this value of α there are three front 1 type temperature profiles.
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Figure 8. Temperature (b), fuel concentration (a) and inhibitor concentration (w) profiles for two different
values of c (shown in the figure) belonging to the parameter value α = 0.087 in the case β = 0.1, bI = 0.2,

bII = 0.1. For this value of α there are two front 2 type temperature profiles.

to which two different velocity values and two front 2 type solutions belong. In figure 9
α = 0.12 to which two different velocity values and two pulse type solutions belong.
Comparing the fuel (a) and the inhibitor (w) profiles, we can say that generally the fuel
is consumed earlier, but for very small values of the velocity (see figure 7) the inhibitor
can be consumed faster.
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Figure 9. Temperature (b), fuel concentration (a) and inhibitor concentration (w) profiles for two different
values of c (shown in the figure) belonging to the parameter value α = 0.12 in the case β = 0.1, bI = 0.2,

bII = 0.1. For this value of α there are two pulse type temperature profiles.

5. Conclusions

We have studied the propagation of a flame supported by an exothermic chemical
reaction under adiabatic conditions and subject to inhibition through a parallel endother-
mic chemical process. The temperature dependence of the reaction rates was assumed
to have a generalised Arrhenius type form with an ignition temperature, below which
there is no reaction. The behaviour of the solutions of our model (2)–(7) depends on the
(scaled) ignition temperatures bI and bII and on the dimensionless parameters α and β.
We can think of α as a heat loss parameter – it represents the heat lost in the endothermic
decay of the inhibitor relative to that produced by the exothermic combustion of the fuel.
The parameter β represents the rate at which inhibitor is consumed relative to the con-
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sumption of fuel. The heat loss through the endothermic reaction has a strong quenching
effect on wave initiation, combustion waves forming only when α < αcrit. This effect
is, in some respects, analogous to the extinction of wave propagation when heat is lost
through Newtonian cooling.

In section 2 we have identified the different types of behaviour that can be sup-
ported by our general model, i.e., when the concrete form of the temperature depen-
dence of the reaction rates was not specified. (It was assumed only that f1 and f2 satisfy
(8)–(9).) We found that the structure of the temperature profile depends mainly on the
value of bI relative to bII. If bI < bII, then it has a front structure. If bI � bII, then it
can be either a front or a pulse. Which type occurs depends most strongly on the para-
meters α and β, the other parameters (the Lewis numbers and the concrete form of the
functions f1 and f2) are not especially significant in determining its qualitative struc-
ture.

Then we investigated our model in detail in the case when f1 and f2 are step func-
tions. In this case the system of differential equations is piecewise linear, i.e., the real
line R can be divided into segments, in which the differential equations are linear with
constant coefficients, hence the solutions can be given explicitly. The joining conditions
at the endpoints of the segments give a system of nonlinear algebraic equations that has
to be solved numerically to obtain the solution. In section 3 an algorithm was presented
to execute this procedure.

The results obtained in the step function case were presented in section 4. We
determined the wave speed (c), cooling parameter (α), curves for various values of the
parameters β, bI and bII. It can have three different shapes, hence we get other forms of
quenching, than in the case of Newtonian cooling. In the case bI < bII and for larger
values of β in the case bI � bII the flame velocity depends monotonically on α (see
figures 1, 3 and 5). For moderate values of β, in the case bI � bII, the (α, c) diagram
has a turning point as in the case of Newtonian cooling [2–7]. Hence we can expect
a saddle-node bifurcation in our case at αcrit (see figures 3 and 5). For small values of β,
in the case bI > bII, the (α, c) diagram is S-shaped (see figures 5 and 6) as was observed
in [9]. Hence we can have three different flame velocities for the same value of the
cooling parameter α.
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